Abstract

We study the kinetic pathways for the isotropic-to-nematic transition in a fluid of colloidal hard rods. In order to follow the formation of the nematic phase, we develop a new cluster criterion that distinguishes nematic clusters from the isotropic phase. Applying this criterion in Monte Carlo simulations, we find spinodal decomposition as well as nucleation and growth depending on the supersaturation. We determine the height of the nucleation barrier and we study the shape and structure of the cluster. More specifically, we find ellipsoidal nematic clusters with an aspect ratio of about 1.7 and a homogeneous nematic director field. Our results are consistent with theoretical predictions on the shape and director field of nematic tactoids. Classical nucleation theory gives reasonable predictions for the height of the nucleation barrier and the critical nucleus size.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.