Abstract

Recent direct simulation Monte Carlo (DSMC) simulations of homogeneous condensation in free expansion water plumes [Z. Li, J. Zhong, D. A. Levin, and B. Garrison, AIAA J. 47, 1241 (2009)] show that the nucleation rate is a key factor for accurately modeling condensation phenomenon. In this work, we use molecular dynamics (MD) simulations of a free expansion to explore the microscopic mechanisms of water dimer formation and develop collision models required by DSMC. Bimolecular and termolecular dimer cluster formation mechanisms are considered and the former is found to be the main mechanism in expanding flows to vacuum. MD simulations between two water molecules using the simple point charge intermolecular potential were performed to predict the bimolecular dimer formation probability and the probability was found to decrease with collision energy. The formation probabilities and postcollisional velocity and energy distributions were then integrated into DSMC simulations of a free expansion of an orifice condensation plume with different chamber stagnation temperatures and pressures. The dimer mole fraction was found to increase with distance from the orifice and become constant after a distance of about two orifice diameters. Similar to experiment, the terminal dimer mole fraction was found to decrease with chamber stagnation temperatures and increase linearly with chamber stagnation pressures which is consistent with a bimolecular nucleation mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.