Abstract

Phosphate, an essential metabolite involved in numerous cellular functions, is taken up by proton-coupled phosphate transporters of plants and fungi within the major facilitator family. Similar phosphate transporters have been identified across a diverse range of biological entities, including various protozoan parasites linked to human diseases, breast cancer cells with increased phosphate requirements, and osteoclast-like cells engaged in bone resorption. Prior studies have proposed an overview of the functional cycle of a proton-driven phosphate transporter (PiPT), yet a comprehensive understanding of the proposed reaction pathways necessitates a closer examination of each elementary reaction step within an overall kinetic framework. In this work, we leverage kinetic network modeling in conjunction with a “bottom-up” molecular dynamics approach to show how such an approach can characterize the proton-phosphate co-transport behavior of PiPT under different pH and phosphate concentration conditions. In turn, this allows us to reveal the prevailing reaction pathway within a high-affinity phosphate transporter under different experimental conditions and to uncover the molecular origin of the optimal pH condition of this transporter.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call