Abstract

Anatase titanium dioxide is a highly promising material for memristors and photocatalysis. Multiple electronic transport processes are known to be influenced by defects in nanoscale anatase. Hence, in this study, we examine charge transport due to defects with respect to the fabrication of nanometer-thin TiO2 films via kinetic Monte Carlo (kMC). A compact kMC model for metal–oxide–semiconductor (MOS) and metal–oxide–metal (MOM) structures comprising TiO2 was parametrized by the electronic properties of TiO2 in agreement with the literature, in particular, spectroscopic studies and DFT calculations on defects in anatase. kMC simulations of MOS structures were refined, for the first time, by separate drift-diffusion simulations on the band bending in p+-Si substrates as well as by barrier heights adjusted for the Fermi level pinning effect. Referring to the impact of specific TiO2 film growth methods and postgrowth treatments on the parameters for defect energies in particular, electrical jV characteristics...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call