Abstract

The growth of self-assembled quantum dots has been intensively studied in the last decade. Despite substantial efforts, a number of details of the growth process remain unknown. The reason is the inability of current characterization techniques to image the growth process in real time. In this work, this limitation is alleviated by the use of kinetic Monte Carlo simulations in conjunction with cross-sectional scanning tunneling microscopy. The two techniques are used to study the method of strain engineering as a procedure to control the height of quantum dots. We show that fully three-dimensional kinetic Monte Carlo simulations can be matched with the experimentally obtained morphology of buried quantum dots and that combination of the two techniques provides details of the growth process that hitherto could not be obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.