Abstract

Accurate prediction of the gel point for real polymer networks is a long-standing challenge in polymer chemistry and physics that is extremely important for applications of gels and elastomers. Here, kinetic Monte Carlo simulation is applied to simultaneously describe network topology and growth kinetics. By accounting for topological defects in the polymer networks, the simulation can quantitatively predict experimental gel point measurements without any fitting parameters. Gel point suppression becomes more severe as the primary loop fraction in the networks increases. A topological homomorphism theory mapping defects onto effective junctions is developed to qualitatively explain the origins of this effect, which accurately captures the gel point suppression in the low loop limit where cooperative effects between topological defects are small.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.