Abstract

AbstractThe mobile defects created in displacement cascades can either interact within the cascade region or undergo long-range diffusion in the crystal. The kinetic Monte Carlo code ALSOME has been used in the present work to carry out annealing simulations of electron irradiation and single cascades with energy in the range of 2 to 40 keV in α-Fe as a function of temperature. Isochronal annealing of electron irradiation shows a temperature-dependence of the recovery stages that is reasonably close to experiment, but Stage I is controlled by the rotation energy of the <110> dumbbell to the <111> crowdion. The annealing of single cascades has demonstrated that nearly 60% of SIAs formed in the primary state of cascade damage escape from the cascade at temperatures above stage I. Most of the escaping SlAs are in clusters, for only 10% of them are mono-interstitials. Although the number of escaping defects increases with increasing cascade energy, the relative fraction is almost constant for the recoil energies considered. The results are compared with those for copper obtained using the same code [1].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.