Abstract

Biologically active suspensions, such as suspensions of swimming microorganisms, exhibit fascinating dynamics including large-scale collective motions and pattern formation, complex chaotic flows with good mixing properties, enhanced passsive tracer diffusion, among others. There has been much recent interest in modeling and understanding these effects, which often result from long-ranged fluid-mediated interactions between swimming particles. This paper provides a general introduction to a number of recent investigations on these systems based on a continuum mean-field description of hydrodynamic interactions. A basic kinetic model is presented in detail, and an overview of its applications to the analysis of coherent motions and pattern formation, chemotactic interactions, and the effective rheology in active suspensions, is given.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call