Abstract

Thermal oxidation of sulfur vulcanized polyisoprene samples was studied by gravimetry and IR mapping of carbonyl groups (to determine the oxidized layer thickness (TOL)) at temperatures ranging from 60 to 150 °C in air. Oxidation appears noticeably lower than that for the starting non-vulcanized polyisoprene, revealing a stabilizing effect of sulfur-containing species. After a short period where mass loss presumably due to water evaporation predominates, the sample mass increases until a plateau corresponding to 6.3% (at 60 °C) to 0.5% (at 140 °C) mass gain. Practically no weight gain (∼0.1%) was observed at 150 °C. The mass uptake is due to oxygen grafting to the chains. TOL varies from about 4.6 mm (70 °C) to about 1 mm (150 °C). A kinetic model, derived from a mechanistic scheme of radical chain oxidation including stabilizing events due to hydroperoxide reduction by sulfur-containing groups and taking into account the diffusion–reaction coupling, was established and numerically resolved. The model predictions for mass changes and TOL values are in good agreement with experimental data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.