Abstract

Sesbania sesban, a promising short rotation woody crop, was first evaluated in order to assess its physicochemical attributes as a feedstock material in biochar manufacturing. Additionally, thermogravimetric analysis (TGA), performed at 0.5, 1, 4 and 8 °C.min−1, was utilised to conduct thermal analysis, with the results being used to analyse the feedstock's kinetic behaviour during thermal degradation in an inert environment. For the first time, advanced kinetics and technology solutions (AKTS) software was used to analyse the kinetic parameters of sesbania pyrolysis and make kinetic predictions under various thermal conditions. The apparent activation energy (Ea) was determined using Friedman's differential iso-conversional model, which is the primary kinetic modelling method utilised. Other traditional models, such as the integral Flynn-Wall-Ozawa (FWO) and ASTM-E698 methods, were employed for comparison purposes. The activation energy of 124.53 kJ.mol−1 was obtained using the ASTM-E698 technique, while the Ea value for the FWO method ranged from 50 to 200 kJ.mol−1. As it accurately reflects the dynamic nature of lignocellulosic biomass degradation, the differential iso-conversional technique is the most reliable and precise approach, with Ea values ranging from 20 to 205 kJ.mol−1. Predictions under isothermal, step-based and non-isothermal conditions were then constructed using the results computed through the differential iso-conversional model. This information can be used to improve production throughput in a variety of reactors. Additionally, the derived kinetic parameters can be used for process modelling.

Highlights

  • In an attempt to achieve energy security and climate change miti­ gation, short rotation plantations (SRPs), referred to as shortrotation woody crops (SRWCs), have been developed to provide a sta­ ble source of woody biomass for the production of renewable energy [1]

  • Short rotation plantations of fast-growing woody biomass are generally harvested within 2–20 years, and the woody biomass is used in various energy-production related applications

  • The results can be compared to other shortrotation woody crops such as those reported by Chen et al for euca­ lyptus residues: leaves, bark and sawdust [19]

Read more

Summary

Introduction

In an attempt to achieve energy security and climate change miti­ gation, short rotation plantations (SRPs), referred to as shortrotation woody crops (SRWCs), have been developed to provide a sta­ ble source of woody biomass for the production of renewable energy [1]. In addition to energy production, woody biomass can be used for the pyrolytic production of biochar [3]. Poplar (Populus sp.) and willow (Salix sp.) are amongst the most extensively cultivated woody crops in the EU [1], while short-rotation eucalyptus plantations are very popular in Brazil [5]. In addition to such common varieties, Md Noor et al presented an extensive range of crops to cultivate SRPs for woody biomass production [6].

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call