Abstract

The thermal cracking of a vacuum residue from a Brazilian refinery was studied in a continuous pilot plant. Reaction runs were carried out at 440–520 °C, 446–1825 kPa, and space times of 23–69 s. Reaction products were lumped into gas, naphtha, light gas oil (LGO), and heavy gas oil (HGO). The increase of the reaction pressure increased the residue conversion and the product yields. A power law kinetic modeling of the experimental data was performed, comprising first-order irreversible reactions. Two reaction schemes were evaluated: the first scheme consisted of four parallel reactions (one for each product lump), and the second scheme included the consecutive conversion of HGO in LGO. Kinetic parameters were estimated taking into account the experimental error. In the parallel-reaction scheme, almost all estimated parameters were statistically significant (except for the small gas formation at the highest pressure). The LGO and HGO formation reactions presented lower activation energies and higher rate constants. Inclusion of the consecutive reaction led to parameters without statistical significance for all reaction conditions. Furthermore, empirical correlations from the literature were fitted to the product yield data as a function of the process severity. The severity index was modified to include the effect of pressure explicitly, providing a slight improvement of the correlations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.