Abstract

A kinetic study on the simultaneous liquid-phase etherification of ethanol with isobutene (IB), 2-methyl-1-butene (2M1B) and 2-methyl-2-butene (2M2B) catalyzed by Amberlyst™ 35 to form ethyl tert-butyl ether (ETBE) and tert-amyl ethyl ether (TAEE) is presented. Isothermal experimental runs were carried out in a stirred tank batch reactor in the temperature range 323–353K at 2.0MPa, starting from different initial concentrations. Obtained reaction rates were free of catalyst load, internal, and external mass transfer effects. Mathematical fitting of a series of systematically originated models, model selection, and model averaging procedures were applied to find the best model and to draw conclusions about the reaction mechanism. The selected model involves a saturated catalytic surface with the participation of two active sites in etherification reactions and one active site in isoamylenes isomerization. Apparent activation energies for ETBE formation from IB and EtOH, TAEE formation from 2M1B and EtOH, TAEE formation from 2M2B and EtOH, and double bond isomerization between 2M1B and 2M2B were 72.8±1.4, 74.9±2.8, 81.2±2.2 and, 76.5±7.2kJ/mol, respectively. The alkenes with the double bond in terminal position were more reactive towards EtOH than 2M2B, with the double bond in internal position.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.