Abstract

A rate equation-based kinetic model is developed to investigate the effect of important reaction parameters on surface-initiated photoiniferter-mediated photopolymerization (SI-PMP) of methyl methacrylate. In particular, the effect of incident light intensity and concentration of added deactivating species, tetraethylthiuram disulfide (TED), on the growth kinetics of surface-tethered poly(methyl methacrylate) (PMMA) layers was studied in detail. In accord with experimental results, model predictions suggest that maximum rates of PMMA layer growth observed during initial stages of SI-PMP increase as TED concentration ([TED]) is decreased and as light intensity is increased. Conversely, the maximum thickness of the PMMA layers, which is defined as the thickness at which 99% of the surface-tethered polymer chains are irreversibly terminated, increases as [TED] increases and as light intensity decreases. As light intensity and added deactivator affect the number of propagating surface-tethered radicals, findi...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call