Abstract
In this work, we characterize the formation and evolution of electrostatic solitary waves (ESWs) in the space-charge neutralization of ion beams using particle-in-cell simulations. These waves become excited when the electrons emitted from an external filament source initiate a two-stream instability in the beam. We show that such electrostatic waves become excited in both two-dimensional (2D) and three-dimensional (3D) beams with different shapes and sizes. Through a 1D Bernstein–Greene–Kruskal (BGK) analysis of the 2D beam, we find that the non-Maxwellian nature of the beam electrons gives rise to large-sized ESWs that are not predicted by BGK theory since it assumes a Maxwellian electron velocity distribution in the beam. Finally, we show that a 1D BGK theory is inadequate to describe ESWs in 3D beams because of complex electron trajectories.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.