Abstract

The present work reports the kinetic modeling of self-hydrolysis of non-buffered, non-stabilized NaBH4 solutions by model-based isoconversional method. The overall kinetics is described by a ‘reaction-order’ model in a practical operating window of 10–20 wt% NaBH4 solutions at 25–80 °C and 0–50% conversions. The apparent activation energy and pre-exponential factor are interrelated through a kinetic compensation effect (KCE). The apparent reaction order remains constant at a given temperature irrespective of extent of conversion and decreases with increase in temperature. It decreases from first-order to 0.26 with increase in temperature from 25 to 80 °C. The apparent activation energy is found to increase from 65 ± 11 to 162 ± 2 kJ mol−1 with increase in extent of conversion from 0 to 50%. The variation of parameters with extent of conversion is discussed based on changes in solution properties during the progress of hydrolysis reaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.