Abstract
In this investigation, batch and column experiments were conducted to investigate the molybdenum (Mo) sorption and transport processes on a neutral-pH soil (Webster loam) and an acidic soil (Mahan sand) in Ca2+ and K+ background solutions. Batch results showed that the adsorption of Mo was strongly non-linear in both soils and amount of Mo sorbed in the acidic soil was larger than the neutral soil. The Freundlich distribution coefficients (Kf) and Langmuir sorption maxima (Smax) in Ca2+ background solution are larger than that in K+ solution, indicating greater Mo sorption in Ca2+ than in K+. Experimental breakthrough curves (BTCs) demonstrated that mobility of Mo was higher at neutral condition than that at acidic condition. A multi-reaction transport model (MRTM) formulation with two kinetic retention reactions (reversible and irreversible) well described Mo transport for Webster soil. However, MRTM model which accounts for equilibrium and kinetic sites is recommended for Mo transport in Mahan soil, reflecting different soil properties. Based on inverse modeling, the sorption forward rate coefficients (k1) obtained from Ca2+ in both soils are larger than that from K+, which consistent with batch experiment. Overall, MRTM model was capable of describing the Mo transport behavior under different geochemical conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Environmental science and pollution research international
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.