Abstract
Fast time averaged equations are derived for the motion of particles and the generation of electromagnetic wake fields under the action of the ponderomotive potential of an ultraintense laser pulse propagating through a tenuous plasma. Based on these averaged equations, a new particle code is designed which calculates the particle trajectories on the plasma period time scale. The regime of total cavitation of the plasma is investigated. It is found that stable propagation over a long distance is possible in this regime, and that energetic electrons are produced with a simple characteristic dependence of their angle of deflection on energy. This new code allows for computationally efficient modeling of pulse propagation over great distances.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.