Abstract

This work focuses on the kinetics of ethanol production by Scheffersomyces stipitis on xylose with the development of a mathematical model considering the effect of substrate and product concentrations on growth rate. Experiments were carried out in batch and continuous modes, with substrate concentration varying from 7.2 to 145 g L(-1). Inhibitory effects on cell growth, substrate uptake, and ethanol production rates were found to be considerable. Kinetic parameters were obtained through linear and non-linear regression methods. Experiments in continuous mode were performed at different dilution rates to evaluate the inhibitory effect of ethanol. A mixed mathematical model which combined Andrews and Levenspiel's models, combining substrate and product inhibition, was used. A quasi-Newton routine was applied to obtain a more accurate fitting of kinetic parameters. The parameters such as cell to product factor (YP/X) and limiting cell yield (YX) were shown to be dependent on substrate concentration. The kinetic model fitted satisfactorily the experimental data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call