Abstract

AbstractCatalytic conversion of cycloparaffins is a complex process involving competing reaction steps. To understand this process, FCC experiments using methylcyclohexane (MCH) on USY zeolite catalysts were carried out in the mini‐fluidized CREC riser simulator. Runs were developed under relevant FCC process conditions in terms of partial pressures of MCH, temperatures (450–550°C), contact times (3–7 s), catalyst‐oil mass ratios (5), and using fluidized catalysts. MCH overall conversions ranged between 4 to 16 wt %, with slightly higher conversions obtained using the larger zeolite crystallites. Moreover, it was found that MCH undergoes ring opening, protolytic cracking, isomerization, hydrogen transfer and transalkylation. A heterogeneous kinetic model for MCH conversion including thermal effects, adsorption and intrinsic catalytic reaction phenomena was established. Adsorption and kinetic parameters were determined, including the heat of adsorption (−40 kJ/mol), as well as thermal and primary catalytic intrinsic activation energies, which were in the range of 43–69 kJ/mol, and 50–74 kJ/mol, respectively. © 2009 American Institute of Chemical Engineers AIChE J, 2009

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.