Abstract

The mechanism (or mechanisms) whereby fatty acids and other amphipathic compounds are transported from the plasma membrane to intracellular sites of biotransformation remains poorly defined. In an attempt to better characterize the role of cytosolic binding proteins in this process, a kinetic model of intermembrane ligand transport was developed in which diffusional transfer of ligand between membrane and protein is assumed. The model was tested by utilizing stopped-flow techniques to monitor the transfer of the fluorescent fatty acid analogue, 12-anthroyloxy stearate (12-AS), between model membrane vesicles. Studies were conducted in the presence or absence of bovine serum albumin (BSA), liver fatty acid-binding protein (L-FABP), and intestinal fatty acid-binding protein (I-FABP) in order to determine the effect of soluble proteins on the rate of intermembrane ligand transfer. As predicted by the model, the initial velocity of 12-AS arrival at the acceptor membrane increases in an asymptotic manner with the acceptor concentration. Furthermore, probe transfer velocity was found to decline asymptotically with increasing concentrations of BSA or L-FABP, proteins that exhibit diffusional transfer kinetics. This observation was found to hold true independent of whether donor or acceptor vesicles were preequilibrated with the protein. In contrast, 12-AS transfer velocity exhibited a linear correlation with the concentration of I-FABP, a protein that is thought to transport fatty acids, at least in part, via a collisional mechanism. Taken together, these findings validate the derived kinetic model of protein-mediated ligand transport and further suggest that the mechanism of ligand-protein interaction is a key determinant of the effect of cytosolic proteins on intracellular ligand diffusion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.