Abstract
The conventional Cabrera-Mott model for the formation of a thin (nm-sized) flat oxide film on the surface of a macroscopic metal crystal implies that the process is limited by the field-facilitated activated jumps of metal ions at the metal-oxide interface. Earlier, it was modified in order to describe oxidation of metal nanoparticles with the formation of the oxide shell around the close-packed metallic core. In reality, oxidation of metal nanoparticles is often accompanied by the appearance of a hollow in the metallic core (Kirkendall effect). Herein, the analytical treatment takes this effect into account. The numerical results obtained by integration of the corresponding equation show the specifics of the oxidation kinetics in this case.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.