Abstract

Laccase from Trametes versicolor (EC 1.10.3.2) catalyzes the oxidation of aqueous phenol by oxygen and has demonstrated good potential for applications in various industrial and environmental processes. A kinetic model of this system has been developed to facilitate a better understanding of the mechanisms and rate-limiting steps of enzyme-catalyzed transformation and to eventually assist in the choice and design of suitable reactor systems. A kinetic model was derived based on the differential and mass balance equations that describe the interactions of various forms of the enzyme with the aromatic substrate and oxygen. This model also incorporated an expression accounting for enzyme inactivation over time due to the reaction environment. The model was validated by comparing model predictions with experimental observations of phenol transformation and oxygen consumption over time at a variety of enzyme concentrations. Excellent agreement was found between experimental data and predictions of the kinetic model. Sensitivity analyses demonstrated that the reaction between oxidized-laccase and phenol was the rate-limiting step.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.