Abstract

Simultaneous solution of two kinetic models of electrodeposition of copper in sulfate solution is studied in this paper. Bulk concentration of species involved in the numerical solution was calculated using MATLAB software. COMSOL Multiphysics software was used for the numerical solution of copper electrodeposition. Numerical results were evaluated using experimental data obtained by linear sweep voltammetry technique. The experimental data was almost fitted using COMSOL optimization physic module. It was found that kinetic parameters of Cu2+ (k 1Cu), Cu1+ (k 2Cu), and CuCitH (k 1CuCitH) and diffusion coefficient and charge transfer coefficient of Cu2+ ( $${D_{C{u^{2 + }}}}$$ , αCu1), Cu1+ (αCu2) and CuCitH (D CuCitH, αCuCitH) affect the fitting of the experimental data with the computed ones. The variables such as concentration profiles and optimum kinetic parameters that cannot be experimentally measured were achieved by analysis of the model. The parameters, that not affect the fitting, were recognized and kept constant when using the optimization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.