Abstract

AbstractA kinetic model is presented to describe the high temperature (1800 K < T < 3000 K) surface oxidation of particulate boron in a hydrocarbon combustion environment. The model includes a homogeneous gas‐phase B/O/H/C oxidation mechanism consisting of 19 chemical species and 58 forward and reverse elementary reactions, multi‐component gas‐phase diffusion, and a heterogeneous surface oxidation mechanism consisting of ‘elementary’ adsorption and desorption reaction steps. Thermochemical and kinetic parameters for the surface reactions are estimated from available experimental data and/or elementary transition state arguments. The kinetic processes are treated using a generalized kinetics code, with embedded sensitivity analysis, for the combustion of a one‐dimensional (particle radius), spherical particle. Model results are presented for the oxidation of a 200 μm boron particle in a JP‐4/air mixture at ambient temperatures of 1400 K and 2000 K. These results include temperature and gas‐phase species profiles as a function of radial distance and particle burning rates. © 1994 John Wiley & Sons, Inc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.