Abstract

A simple kinetic model is used to describe the interaction of H and D atomic beams with H- and D-covered metal surfaces. The atoms incident from the gas phase can have a direct Eley–Rideal reaction with an adsorbate, reflect, penetrate into the bulk, knock an adsorbate out of its binding site, or trap to form a hot atom. These hot mobile atoms can go on to react with other adsorbates, or eventually relax and stick. A coarse-graining approach, which takes advantage of the large difference between the time scales for the kinetics experiments and the reaction dynamics, allows us to derive relatively simple kinetic equations for reaction rates and coverages. The approach is similar to a kinetic random walk model developed by Küppers and co-workers [J. Phys. Chem. 109, 4071 (1998)] except that our equations can be used to derive analytical expressions for saturation coverages, rates, and yields. The model is applied to the case of H atom reactions on a Ni(100) surface, and a detailed comparison is made with both experimental and quasiclassical studies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.