Abstract

The study of non-stationary rarefied gas flows is, currently, attracting a great deal of attention. Such an interest arises from creating the pulsed jets used for deposition of thin films and special coatings on the solid surfaces. However, the problems of non-stationary rarefied gas flows are still understudied because of their large computational complexity. The paper considers the computational aspects of investigating non-stationary movement of gas reflected from a wall and flowing through a suddenly formed gap. The study objective is to analyse the possible numerical kinetic approaches to solve such problems and identify the difficulties in their solving. When modeling the gas flows in strong rarefaction one should consider the Boltzmann kinetic equation, but its numerical implementation is rather time-consuming. In order to use more simple approaches based, for example, on approximation kinetic equations (Ellipsoidal-Statistical model, Shakhov model), it is important to estimate the difference between the solutions of the model equations and of the Boltzmann equation. For this purpose, two auxiliary problems are considered, namely reflection of the gas flow from the wall and outflow of the free jet into the rarefied background gas.A numerical solution of these problems shows a weak dependence of the solution on the type of the collision operator in the rarefied region, but at the same time a strong dependence of a behavior of the macro-parameters on the velocity grid step. The detailed velocity grid is necessary to avoid a non-monotonous behavior of the macro-parameters caused by so-called ray effect. To reduce computational costs of the detailed velocity grid solution, a hybrid method based on the synthesis of model equations and the Boltzmann equation is proposed. Such an approach can be promising since it reduces the domain in which the Boltzmann collision integral should be used.The article presents the results obtained using two different software packages, namely a Unified Flow Solver (UFS) [13] and a Nesvetay 3D software complex [14-15]. Note that the UFS uses the discrete ordinate method for velocity space on a uniform grid and a hierarchical adaptive mesh refinement in physical space. The possibility to calculate both the Boltzmann equation and the model equations is realized. The Nesvetay 3D software complex was created to solve the Shakhov model equation (S-model) for calculations based on non-structured non-uniform grids, both in velocity space and in physical one.

Highlights

  • Постановка задачиЗадача рассматривается в двумерной геометрии, представляющей длинный плоский канал и резервуар бесконечной емкости, отделенный от канала тонкой вертикальной пластиной (рис.)

  • В статье представлено численное сравнение решений модельных уравнений (S-модели и ES- модели) и решения полного уравнения Больцмана для нестационарной задачи отражения потока газа от стенки и истечения в резервуар с фоновым газом при низком давлении

  • The study of non-stationary rarefied gas flows is, currently, attracting a great deal of attention. Such an interest arises from creating the pulsed jets used for deposition of thin films and special coatings on the solid surfaces

Read more

Summary

Постановка задачи

Задача рассматривается в двумерной геометрии, представляющей длинный плоский канал и резервуар бесконечной емкости, отделенный от канала тонкой вертикальной пластиной (рис.). В момент t = 0 диафрагма открывается, образуя отверстие шириной 2d , и начинается истечение газа в разреженную область, при этом движущийся в канале газ смешивается с отраженным газом от торца (вертикальной стенки). Закон отражения от вертикальной пластины, как в канале (слева), так и в резервуаре (справа), полагается полностью диффузным с функцией распределения Максвелла. На верхней и правой границах области разрежения для входящих в область частиц задается функция распределения в виде функции Максвелла с параметрами фонового газа. Что мелкий шаг в скоростном пространстве необходим для получения гладких макропараметров в области сильного разрежения, где течение близко к свободномолекулярному при умеренных значениях числа Кнудсена входящего в канал газа, а также из-за малых значений температуры. Расчеты полного уравнения Больцмана на сильно измельченных сетках достаточно трудоемки, поэтому применение модельных уравнений и оценка возможной ошибки при их использовании представляется важным

Кинетические уравнения
Численный анализ вспомогательных задач

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.