Abstract

AbstractWe present a grid‐free or meshless approximation called the kinetic meshless method (KMM), for the numerical solution of hyperbolic conservation laws that can be obtained by taking moments of a Boltzmann‐type transport equation. The meshless formulation requires the domain discretization to have very little topological information; a distribution of points in the domain together with local connectivity information is sufficient. For each node, the connectivity consists of a set of nearby nodes which are used to evaluate the spatial derivatives appearing in the conservation law. The derivatives are obtained using a modified form of the least‐squares approximation. The method is applied to the Euler equations for inviscid flow and results are presented for some 2‐D problems. The ability of the new scheme to accurately compute inviscid flows is clearly demonstrated, including good shock capturing ability. Comparisons with other grid‐free methods are made showing some advantages of the current approach. Copyright © 2007 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.