Abstract

Lipids are known to play a vital role in the molecular organization of all cellular life. Molecular recognition is another fundamental biological process that is generally attributed to biological polymers, such as proteins and nucleic acids. However, there is evidence that aggregates of lipids and lipid-like molecules are also capable of selectively binding to or regulating the partitioning of other molecules. We previously demonstrated that a model two-phase octanol/water system can selectively partition Red 40 and Blue 1 dyes added to an aqueous phase, with the selectivity depending on the surfactant (e.g., cetyltrimethylammonium bromide) dissolved in the organic phase. Here, we elucidate the mechanism of molecular recognition in this system by using quantitative partitioning experiments and molecular dynamics (MD) simulations. Our results indicate that the selectivity for the red dye is thermodynamically favored at all surfactant concentrations, while selectivity for the blue dye is kinetically favored at high surfactant concentrations. The kinetic selectivity for the blue dye correlates with the presence of molecular aggregation at the oil-water interface. Coarse-grained MD simulations elucidate nanoscale supramolecular structures that can preferentially bind one small molecule rather than another at an interface, providing a selectively permeable barrier in the absence of proteins. The results suggest a new supramolecular mechanism for molecular recognition with potential applications in drug delivery, drug discovery, and biosensing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.