Abstract

AMPA-type ionotropic glutamate receptors mediate the majority of fast excitatory neurotransmission in the mammalian central nervous system and are essential for brain functions, such as memory and learning. Dysfunction of these receptors has been implicated in a variety of neurological diseases. Using a laser-pulse photolysis technique, we investigated the channel opening mechanism for GluRD(flip) or GluR4(flip) (i.e., the flip isoform of GluRD), an AMPA receptor subunit. The minimal kinetic mechanism for channel opening is consistent with binding of two glutamate molecules per receptor complex. The GluRD(flip) channel opens with a rate constant of (6.83 +/- 0.74) x 10(4) s(-1) and closes with a rate constant of (3.35 +/- 0.17) x 10(3) s(-1). On the basis of these rate constants, the channel opening probability is calculated to be 0.95 +/- 0.12. Furthermore, the shortest rise time (20-80% of the receptor current response to glutamate) is predicted to be 20 micros, which is approximately 8 times shorter than the previous estimate. These findings suggest that the kinetic property of GluRD(flip) is similar to that of GluR2Q(flip), another fast-activating AMPA receptor subunit.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.