Abstract

The Escherichia coli Rep helicase catalyzes the unwinding of duplex DNA in a reaction that is coupled to ATP binding and hydrolysis. The Rep protein is a stable monomer in the absence of DNA but dimerizes upon binding either single-stranded or duplex DNA, and the dimer appears to be the functionally active form of the Rep helicase. As a first step toward understanding how ATP binding and hydrolysis are coupled energetically to DNA unwinding, we have investigated the kinetic mechanism of nucleotide binding to the Rep monomer (P) using stopped-flow techniques and the fluorescent ATP analogue, 2'(3')-O-(N-methylanthraniloyl-ATP (mantATP). The fluorescence of mantATP is enhanced upon Rep binding due to energy transfer from tryptophan. The results are consistent with the following two-step mechanism, in which the bimolecular association step is followed by a conformational change in the P-mantATP complex: P + mantATP [formula: see text] P-mantATP [formula: see text] (P-mantATP). The following rate and equilibrium constants were determined at 4 degrees C in 20 mM Tris.HCl (pH 7.5), 6 mM NaCl, 5 mM MgCl2, and 10% (v/v) glycerol: k+1 = (1.1 +/- 0.2) x 10(7) M-1 s-1; k-1 = 3.2 (+/- 0.5) s-1; k+2 = 2.9 (+/- 0.5) s-1; k-2 = 0.04 (+/- 0.005) s-1; K1 = k+1/k-1 = (3.4 +/- 0.8) x 10(6) M-1; K2 = k+2/k-2 = 73 (+/- 10); Koverall = K1K2 = (2.30 +/- 0.6) x 10(8) M-1. Similar rate and equilibrium constants are obtained with mantATP gamma S, whereas the apparent rate constant for mantAMPPNP binding is 15-fold lower than for mantATP and equilibrium binding is weaker (Koverall approximately 10(6) M-1). Rep monomer does bind mantATP in the absence of Mg2+ (Koverall approximately 5 x 10(5) M-1), although the four rate constants in the above reaction increase by at least 8-fold (k-1 and k-2 increase by approximately 100- and approximately 1000-fold, respectively). The affinities of Mg2+ for P-mantATP and (P-mantATP)* are 10- and 1000-fold higher than those for nucleotide-free Rep monomer, indicating that the second step in the reaction is associated with a marked increase in Mg2+ affinity. The bound Mg2+ in a (P-mantATP)*-Mg2+ complex dissociates at a rate that is comparable to the rate of mantATP release.(ABSTRACT TRUNCATED AT 400 WORDS)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.