Abstract

Environmental transmission or scanning transmission electron microscope is ideally suited to observe gas solid interactions at nanoscale. It is shown that the time and temperature resolved data, obtained from in situ observations, can be used to obtain reaction rates and understand the kinetics of the processes. Low or high magnification images provide the change in length, area or volume with time at constant temperature and pressure conditions during nitridation of Cu-Cr thin films, deposition of Au particles, growth of Si nanowire and carbon nanotubes. Effect of electron beam is estimated by making observations with and without constant electron beam exposure. Quantitative electron energy loss spectroscopy is employed to measure the reduction rate of Ce(+4) in pure ceria, mixed oxides (ceria-zirconia) and catalyst (Rh-ceria-zirconia) powders.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call