Abstract

Kinetic isotope effects were measured for oxidations of (S,S)-2-(p-trifluoromethylphenyl)cyclopropylmethane containing zero, two, and three deuterium atoms on the methyl group by Compounds I from the cytochrome P450 enzymes CYP119 and CYP2B4 at 22 degrees C. The oxidations displayed saturation kinetics, which permitted solution of both binding constants (K(bind)) and first-order oxidation rate constants (k(ox)) for both enzymes with the three substrates. The binding constant for CYP2B4 Compound I was about 1 order of magnitude greater than that for CYP119 Compound I, but the oxidation rate constants were similar for the two. In oxidations of 1-d(0), k(ox) = 10.4 s(-1) for CYP119 Compound I, and k(ox) = 12.4 s(-1) for CYP2B4 Compound I. Primary kinetic isotope effects (P) and secondary kinetic isotope effects (S) were obtained from the results with the three isotopomers. The primary KIEs were large, P = 9.8 and P = 8.9 for CYP119 and CYP2B4 Compounds I, respectively, and the secondary KIEs were small and normal, S = 1.07 and S = 1.05, respectively. Large intermolecular KIEs for 1-d(0) and 1-d(3) of k(H)/k(D) = 11.2 and 9.8 found for the two Compounds I contrast with small intermolecular KIEs obtained previously for the same substrate in P450-catalyzed oxidations; these differences suggest that a second electrophilic oxidant, presumably iron-complexed hydrogen peroxide, is important in cytochrome P450 oxidations under turnover conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.