Abstract

We present very accurate theoretical results of Penning ionization rate coefficients of the excited metastable helium atoms (4He(23S) and 3He(23S)) colliding with the hydrogen isotopologues (H2, HD, D2) in the ground and first excited rotational and vibrational states at subkelvin regime. The calculations are performed using the current best ab initio interaction energy surface, which takes into account the nonrigidity effects of the molecule. The results confirm a recently observed substantial quantum kinetic isotope effect (Nat. Chem. 2014, 6, 332–335) and reveal that the change of the rotational or vibrational state of the molecule can strongly enhance or suppress the reaction. Moreover, we demonstrate the mechanism of the appearance and disappearance of resonances in Penning ionization. The additional model computations, with the morphed interaction energy surface and mass, give better insight into the behavior of the resonances and thereby the reaction dynamics under study. Our theoretical findings are compared with all available measurements, and comprehensive data for prospective experiments are provided.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.