Abstract
BackgroundL-amino acid oxidases isolated from snake venoms (SV-LAAOs) are enzymes that have great therapeutic potential and are currently being investigated as tools for developing new strategies to treat various diseases, including cancer and bacterial infections. The main objective of this study was to make a brief evaluation of the enzymatic stability of two Bothrops LAAOs, one isolated from Bothrops jararacussu (BjussuLAAO-II) and the other from Bothrops moojeni (BmooLAAO-I) venoms.Methods and resultsThe enzymatic activity and stability of both LAAOs were evaluated by microplate colorimetric assays, for which BjussuLAAO-II and BmooLAAO-I were incubated with different L-amino acid substrates, in the presence of different ions, and at different pH ranges and temperatures. BjussuLAAO-II and BmooLAAO-I demonstrated higher affinity for hydrophobic amino acids, such as Phe and Leu. The two enzymes showed high enzymatic activity in a wide temperature range, from 25 to 75 °C, and presented optimum pH around 7.0. Additionally, Zn2+, Al3+, Cu2+ and Ni2+ ions negatively modulated the enzymatic activity of both LAAOs. As to stability, BjussuLAAO-II and BmooLAAO-I showed high enzymatic activity for 42 days stored at 4 °C in neutral pH solution. Moreover, the glycan portions of both LAAOs were analyzed by capillary electrophoresis, which revealed that BjussuLAAO-II presented two main glycan portions with relative masses of 7.78 and 8.13 CGU, while BmooLAAO-I showed three portions of 7.58, 7.94 and 8.37 CGU.ConclusionsOur results showed that, when stored properly, BjussuLAAO-II and BmooLAAO-I present enzymatic stability over a long time period, which is very important to allow the use of these enzymes in pharmacological studies of great impact in the medical field.
Highlights
L-amino acid oxidases isolated from snake venoms (SV-LAAOs) are enzymes that have great therapeutic potential and are currently being investigated as tools for developing new strategies to treat various diseases, including cancer and bacterial infections
Our results showed that, when stored properly, BjussuLAAO-II and BmooLAAO-I present enzymatic stability over a long time period, which is very important to allow the use of these enzymes in pharmacological studies of great impact in the medical field
The present study describes a brief evaluation of the enzymatic activity of two Bothrops LAAOs (BmooLAAO-I and BjussuLAAO-II) in the face of variations in temperature, pH, interference of different ions and determination of kinetic parameters, as well as the characterization of the glycan portions of these proteins
Summary
L-amino acid oxidases isolated from snake venoms (SV-LAAOs) are enzymes that have great therapeutic potential and are currently being investigated as tools for developing new strategies to treat various diseases, including cancer and bacterial infections. Many studies have been dedicated to exploring the physical-chemical properties, structural characteristics and biological functions of SV-LAAOs from different snake species [3,4,5,6,7]. Such studies indicate that SV-LAAOs from different sources can present significant variances in molecular. The catalytic cycle begins with the reductive half-reaction involving the conversion of FAD to FADH2 and concomitant oxidation of the amino acid to an imino acid This imino acid undergoes non-enzymatic hydrolysis, releasing α-keto acid and ammonia. Studies indicate that the numerous biological and pharmacological effects presented by SV-LAAOs are due, at least partially, to the H2O2 generated during their enzymatic reaction, because in the presence of catalase, an agent that degrades H2O2, such activities are generally inhibited [1]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Venomous Animals and Toxins including Tropical Diseases
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.