Abstract

Homogeneous and heterogeneous nanoparticle (NP) assembly induced by ligand-specific immunorecognition is commonly used for biosensing applications. We investigated how the structural design of the peptide ligands used to functionalise gold NPs affected the kinetics of NP assembly and hence biodetection. We observed that aggregation rates varied up to 20-fold for the surface binding and 120-fold for the solution-phase assembly of NPs as a function of peptide design. Our results show how the fundamental difference in NP assembly on surfaces and in solution requires different optimised ligand designs. This increased understanding of the specifics of ligand-triggered NP aggregation should help in the design of faster and more efficient bioassays in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.