Abstract

Two intermediates (2 and 3) are formed consecutively in the reaction of a diiron(III) complex [Fe(III)(2)(μ-O)(OH)(H(2)O)(TPA)(2)](ClO(4))(3) (TPA = tris(2-pyridylmethyl)amine, tris(picolyl)amine) with H(2)O(2) in CH(3)CN at -40 °C. Low-temperature stopped-flow studies showed that both species are kinetically competent in oxidation of phosphines and phenols. The first intermediate (2) reacts with substrates very rapidly (second-order rate constants reach 10(5)-10(6) M(-1) s(-1) for substituted triarylphosphines and 10(3)-10(5) M(-1) s(-1) for substituted phenols), in keeping with a diiron(IV)-oxo formulation. The second intermediate (3), a mixed-valent Fe(III)Fe(IV) species, is more stable than 2, and reacts with substrates more slowly (second-order rate constants range from 150 to 550 M(-1) s(-1) for triaryl phosphine oxidation, and from 18 to 790 M(-1) s(-1) for phenol oxidation). Reaction rates increase with increasing electron donating abilities of substituents, indicating that both 2 and 3 act as electrophilic oxidants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call