Abstract

AbstractThe relentless quest for sustainable and efficient energy storage solutions has propelled sodium‐ion batteries (SIBs) to the forefront of research and development in the realm of rechargeable batteries. This mini review delves into the intricate interfacial kinetics of Na ion transfer within SIBs, with a special focus on the carbon‐based negative electrode/electrolyte interfaces. By synthesizing insights from a myriad of studies encompassing experimental and theoretical analyses, we illuminate the critical role of electrode material properties and interfacial dynamics in dictating the kinetics of Na ion transfer for SIBs. Strategies for optimizing these parameters are scrutinized, revealing pathways to enhance the kinetic behavior of Na ions. Furthermore, emerging materials such as hard carbon, carbon nanospheres, and graphene‐like graphite are evaluated for their potential to surmount existing limitations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.