Abstract

With first-principles kinetic simulations, we show that a large-scale Alfvén wave (AW) propagating in an inhomogeneous background decays into kinetic Alfvén waves (KAWs), triggering ion and electron energization. We demonstrate that the two species can access unequal amounts of the initial AW energy, experiencing differential heating. During the decay process, the electric field carried by KAWs produces non-Maxwellian features in the particle velocity distribution functions, in accordance with space observations. The process we present solely requires the interaction of a large-scale AW with a magnetic shear and may be relevant for several astrophysical and laboratory plasmas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.