Abstract

Kinetically-grown self-avoiding walks have been studied on Watts-Strogatz small-world networks, rewired from a two-dimensional square lattice. The maximum length L of this kind of walks is limited in regular lattices by an attrition effect, which gives finite values for its mean value 〈L 〉. For random networks, this mean attrition length 〈L 〉 scales as a power of the network size, and diverges in the thermodynamic limit (system size N ↦∞). For small-world networks, we find a behavior that interpolates between those corresponding to regular lattices and randon networks, for rewiring probability p ranging from 0 to 1. For p < 1, the mean self-intersection and attrition length of kinetically-grown walks are finite. For p = 1, 〈L 〉 grows with system size as N1/2, diverging in the thermodynamic limit. In this limit and close to p = 1, the mean attrition length diverges as (1-p)-4. Results of approximate probabilistic calculations agree well with those derived from numerical simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.