Abstract

The dynamic conformational changes due to the noncovalent intercalative binding of ethidium bromide and racemic trans-7,8-dihydroxy-anti-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE), and the covalent binding of BPDE to supercoiled phi X174 DNA, have been studied by gel electrophoresis and a novel application of a kinetic flow linear dichroism technique. The magnitude of the linear dichroism (delta A) of the DNA oriented in the flow gradient is sensitive to the hydrodynamic shape of the DNA molecule which is affected by the binding of the drug or the carcinogen BPDE. While the linear dichroism of ethidium bromide supercoiled DNA is time independent, the delta A spectra of BPDE-DNA reaction mixtures vary on time scales of minutes, which correspond to the reaction rate constant of BPDE to form 7,8,9,10-tetrahydroxytetrahydrobenzo[a]pyrene hydrolysis products and covalent DNA adducts. The rapid noncovalent intercalation of BPDE causes an initial large increase in delta A (up to 250%, corresponding to the dichroism observed with relaxed circular DNA), followed by a slower decrease in the linear dichroism signal. This decrease in delta A is attributed to the removal of intercalated diol epoxide molecules and the resulting reversible increase in the number of superhelical turns. The kinetic flow dichroism spectra indicate that the noncovalent BPDE-DNA complexes are intercalative in nature, while the covalent adducts are characterized by a very different conformation in which the long axes of the pyrenyl residues are oriented at a large angle with respect to the average orientation of the planes of the DNA bases.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.