Abstract

The kinetics of hydrogen sulfide sorption by the surface of a ferromanganese material containing in its composition a mixture of iron (II) and (III) oxides FeO × Fe2O3, takanelite (Mn, Ca) Mn4O9 × 3H2O and quartz SiO2, and which is samples of unrefined ferromanganese ore, was studied in this work. Sorption rate constant and activation energy constant values were calculated. The catalytic effect of iron (III) oxide was established, the presence of which in natural material contributes to a decrease in the H2S sorption activation energy. Based on the results of X-ray phase and chromatographic analysis methods, a chemical (redox) reaction of the conversion of hydrogen sulfide into elemental sulfur and H2O was revealed. The overall process rate is expressed in terms of the physical sorption stage and chemical transformation of the components; the influence of the rate of the third stage—reaction products desorption—on the overall rate of the process is taken into account. The limiting stage of the process is determined—a chemical reaction. The relation between the heat and the activation energy of the chemical transformation is used according to the Bronsted—Polanyi rule for catalytic processes. It was found that with an increase in the chemisorption heat, the activation energy of the chemisorption stage decreases and, as a consequence, its rate increases. The sorption process parameters were calculated—the Fe2O3 coverage degree with the initial substances and reaction products providing the maximum sorption rate, which can be a criterion for evaluating the catalytically active sites of the catalyst surface for carrying out catalytic reactions.

Highlights

  • The emission of waste gases containing toxic substances, including sulfur-containing compounds, is a serious environmental problem of the metallurgical industry [1,2,3,4,5,6]

  • The kinetic parameters were calculated using the laws of formal kinetics

  • The reaction order was determined by a graphical method of plotting linear forms of kinetic dependencies

Read more

Summary

Introduction

The emission of waste gases containing toxic substances, including sulfur-containing compounds, is a serious environmental problem of the metallurgical industry [1,2,3,4,5,6]. Sorption methods are still effective in the field of the air environment cleaning process. Considering the volume of evolved gaseous substances, porous inorganic materials containing substances possessed with oxidative properties to a number of gaseous compounds can be used as promising and inexpensive sorbents [7]. Manganese oxides are widely used in gas cleaning technologies as oxidizing agents. There exist various artificial sorption materials with the manganese oxide film coated surface. Oxidative destruction of phenols and cyanide compounds, sorption of hydrogen sulfide and sulfur (IV) oxide, as well as organic compounds, is taking place on the surface of manganese oxide

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call