Abstract
1. 1. Rhodanese inactivation by 2,4,6-trinitrobenzenesulphonate, in the presence of n-butylamine in the reaction medium, has been studied by a kinetic analysis of the data, based on the assumption that enzyme inactivation is brought about by direct reaction of this with the modifying agent. 2. 2. Initial reaction rates for rhodanese activity loss were determined by a mathematical analysis of the first three recorded values of rhodanese residual activity. 3. 3. It was found that fractional rhodanese activity values, at infinite reaction time with 2,4,6-trinitrobenzenesulphonate (end-point values), were significantly lower than the values calculated on the assumption of rhodanese inactivation being entirely due to direct trinitrophenylation of enzyme protein. 4. 4. Also, initial enzyme inactivation values were higher in the presence, rather than in the absence, of n-butylamine. 5. 5. These results indicate that 2,4,6-trinitrobenzenesulphonate-induced rhodanese inactivation, in the presence of n-butylamine in the reaction medium, is due to the generation of a highly reactive, unstable intermediate, probably a free radical species.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.