Abstract

The pH-independent hydrolysis of four esters, p-methoxyphenyl 2,2-dichloroethanoate (1a), p-methoxyphenyl 2,2-dichloropropanoate (1b), p-methoxyphenyl 2,2-dichlorobutanoate (1c), and p-methoxyphenyl 2,2-dichloropentanoate (1d), in dilute aqueous solution has been studied as a function of the molality of added cosolutes ethanol, 1-propanol, and 1-butanol. The rate constants for the neutral hydrolysis decrease with increasing cosolute concentration. These kinetic medium effects respond to both the hydrophobicity of the ester and of the monohydric alcohol. The observed rate effects were analyzed using both a thermodynamic and a kinetic model. The kinetic model suggests a molecular picture of a hydrophobically stabilized encounter complex, with equilibrium constants K(ec) often smaller than unity, in which the cosolute blocks the reaction center of the hydrolytic ester for attack by water. The formation of these encounter complexes leads to a dominant initial-state stabilization as follows from the thermodynamic model. Decreases in both apparent enthalpies and entropies of activation for these hydrolysis reactions correspond to unfavorable enthalpies and favorable entropies of complexation, which confirms that the encounter complexes are stabilized by hydrophobic interactions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.