Abstract

This study aimed to evaluate the formation of tryptophan derivatives in the kynurenine pathway during wort fermentation using a multi-response kinetic model and an empirical modified logistic model. Saccharomyces cerevisiae NCYC 88 (ale yeast) and S. pastorianus NCYC 203 (lager yeast) were used to understand the effect of fermentation type on tryptophan derivatives. According to the modified logistic model, tryptophan concentration was critical for the maximum production rate of kynurenic acid, a neuroprotective compound. The results indicated that utilization of tryptophan and kynurenic acid formation were faster in wort fermented with S. cerevisiae than with S. pastorianus. The reaction rate constants implied that the kynurenic acid formation stage was minor compared to other enzymatic reactions leading to NAD+ synthesis. Multi-response kinetic modeling of kynurenine pathway provided insights into tryptophan derivative formation, which can facilitate improved beer fermentation processing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.