Abstract
This work aimed to evaluate the process performance and stability of the anaerobic digestion of sonicated food waste (SFW) by determining the kinetic parameters using Monod, Contois, Modified Stover-Kincannon, and Grau second-order multicomponent substrate removal kinetic models. The anaerobic digestion was conducted on the sonicated food waste (SFW) in a 13 L continuously stirred tank reactor (CSTR) with a stepwise organic loading rate (OLR) ranging from 1.5 to 3.5 gCOD/L.day. The experimental works were carried out in two stages (start-up then followed by semi-continuous). The ultrasonic pretreatment was performed by sonicating the food waste slurry for 10 minutes at a 20 kHz frequency and specific energy input of 25,997 kJ/kg TS. The process performance, as well as acceptable stability in the SFW digester, provided satisfactory predictions with Monod, Modified Stover-Kincannon, Grau second-order multicomponent substrate removal, and Contois kinetic models. A significant relationship was seen between the predicted and experimental data with correlation coefficients (R2) ranging from 0.893 to 0.996. In this study, the Monod model with R2 = 0.996 indicates the most suitable model for understanding the kinetic parameters of the anaerobic system in the CSTR which digests the sonicated food waste (SFW) slurry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Water science and technology : a journal of the International Association on Water Pollution Research
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.