Abstract

With a new approach based on the ensemble average over particle state transition paths in phase space, a kinetic equation for particles transported in turbulent flows is derived. The probability density function (PDF) for particles is defined as an ensemble average of a special fine-grained PDF, referred to as the local path density operator. The kinetic equation is derived from a Taylor series expansion of the PDF in terms of the cumulants with respect to particle paths in phase space and leads to a closed expression for its diffusion terms. It shows that the random forcing of eddy fluctuations, non-stationarity of turbulence, and inertia of particles are explicitly presented in the diffusion coefficient, which could help us to understand how particles are diffused by these underlying mechanisms. The kinetic equation is applicable to non-Markovian, non-Gaussian, and non-stationary stochastic processes, while for Markovian processes, it recovers the classical Fokker–Planck equation. The macroscopic equations for particle phase are derived based on the kinetic equation and compared with the direct numerical simulation of particles transported in turbulent flows.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call