Abstract

We present calculations of the temperature-dependent electrostatic and chemical potential distributions in disordered normal metal-superconductor structures. We show that they differ appreciably in the presence of a superconducting terminal and propose an experiment to measure these two different potential distributions. We also compute the resistance change in these structures due to a recently proposed mechanism which causes a finite effect at zero temperature. The relative resistance change due to this effect is of the order of the interaction parameter in the normal metal. Finally a detailed calculation of the resistance change due to the temperature dependence of Andreev reflection in diffusive systems is presented. We find that the maximal magnitude due to this thermal effect is in general much larger than the magnitude of the novel effect.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call