Abstract

The kinetic energy release of fragment ions produced by the interaction of femtosecond laser pulse radiation with diatomic and linear triatomic molecules N2, CO, CO2 and CS2 is investigated. In the case of linear polarization, angles at which the kinetic energy release of ions has the maximum value are different from the alignment of molecules though the kinetic energy release of fragment atomic ions depends on the angle between the laser polarization vector and the detection axis of the time-of-flight. For the diatomic molecules, the critical internuclear distance in multielectron dissociative ionization with a circularly polarized light is larger than that with a linearly polarized light. For linear triatomic molecules, our data indicate that a concerted Coulomb explosion process is a universal phenomenon in the interaction of molecules with intense laser fields, even in the circularly polarized regime. During two C–O (or C–S) bonds breaking simultaneously, the C ion obtained larger energy in circular polarization than that in the linear polarization. Different variations of kinetic energy release between the diatomic and the linear triatomic molecules are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.