Abstract

A study of ion equilibration in annular regions of ultracold strontium plasmas is reported. Plasmas are formed by photoionizing laser-cooled atoms with a pulsed dye laser. The experimental probe is spatially-resolved absorption spectroscopy using the 2S1/2-2P1/2 transition of the Sr+ ion. The kinetic energy of the ions is calculated from the Doppler broadening of the spectrum, and it displays clear oscillations during the first microsecond after plasma formation. The oscillations, which are a characteristic of strong coulomb coupling, are fit with a simple phenomenological model incorporating damping and density variation in the plasma.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call