Abstract
The mechanism of high-Tc superconductivity is investigated with interests on the microscopic aspects of the condensation energy. The theoretical analysis is performed on the basis of the FLEX approximation which is a microscopic description of the spin-fluctuation-induced-superconductivity. Most of phase transitions in strongly correlated electron system arise from the correlation energy which is copmetitive to the kinetic energy. However, we show that the kinetic energy cooperatively induces the superconductivity in the underdoped region. This unusual decrease of kinetic energy below T_c is induced by the feedback effect. The feedback effect induces the magnetic resonance mode as well as the kink in the electronic dispersion, and alters the properties of quasi-particles, such as mass renormalization and lifetime. The crossover from BCS behavior to this unusual behavior occurs for hole dopings. On the other hand, the decrease of kinetic energy below T_c does not occur in the electron-doped region. We discuss the relation to the recent obserbation of the violation of optical sum rule.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.